Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 4 de 4
1.
Neurobiol Dis ; 182: 106141, 2023 06 15.
Article En | MEDLINE | ID: mdl-37121555

Niemann Pick diseases types A (NPDA) and C (NPDC) are lysosomal storage disorders (LSDs) leading to cognitive impairment, neurodegeneration, and early death. NPDA and NPDC have different genetic origins, being caused by mutations in the acid sphingomyelinase (ASM) or the cholesterol transport protein NPC1, respectively. However, they share a common pathological hallmark in the accumulation of lipids in the endolysosomal compartment. Here, we tested the hypothesis that polyphenols reduce lipid overload in NPD cells by enhancing the secretion of extracellular vesicles (ECVs). We show that among the polyphenols tested, the ellagic acid metabolites, urolithin A and B, were the safest and most efficient in increasing ECV secretion. They reduced levels of accumulating lipids and lysosomal size and permeabilization in cultured bone marrow-derived macrophages and neurons from ASMko and NPC1 mutant mice, which mimic NPDA and NPDC, respectively. Moreover, oral treatment with ellagic acid reduced lipid levels, ameliorated lysosomal alterations, and diminished microglia activation in the brain of NPD mice. These results support the therapeutic value of ECV secretion and polyphenols for NPDs, which may also help treat other LSDs characterized by intracellular lipid overload.


Extracellular Vesicles , Lysosomal Storage Diseases , Niemann-Pick Disease, Type A , Mice , Animals , Ellagic Acid/pharmacology , Ellagic Acid/metabolism , Sphingomyelin Phosphodiesterase/genetics , Lysosomal Storage Diseases/pathology , Niemann-Pick Disease, Type A/genetics , Lysosomes/metabolism , Phenotype , Extracellular Vesicles/metabolism , Lipids
2.
EMBO Rep ; 20(11): e48143, 2019 11 05.
Article En | MEDLINE | ID: mdl-31535451

NPC is a neurodegenerative disorder characterized by cholesterol accumulation in endolysosomal compartments. It is caused by mutations in the gene encoding NPC1, an endolysosomal protein mediating intracellular cholesterol trafficking. Cognitive and psychiatric alterations are hallmarks in NPC patients pointing to synaptic defects. However, the role of NPC1 in synapses has not been explored. We show that NPC1 is present in the postsynaptic compartment and is locally translated during LTP. A mutation in a region of the NPC1 gene commonly altered in NPC patients reduces NPC1 levels at synapses due to enhanced NPC1 protein degradation. This leads to shorter postsynaptic densities, increased synaptic cholesterol and impaired LTP in NPC1nmf164 mice with cognitive deficits. NPC1 mediates cholesterol mobilization and enables surface delivery of CYP46A1 and GluA1 receptors necessary for LTP, which is defective in NPC1nmf164 mice. Pharmacological activation of CYP46A1 normalizes synaptic levels of cholesterol, LTP and cognitive abilities, and extends life span of NPC1nmf164 mice. Our results unveil NPC1 as a regulator of cholesterol dynamics in synapses contributing to synaptic plasticity, and provide a potential therapeutic strategy for NPC patients.


Cholesterol 24-Hydroxylase/metabolism , Cholesterol/metabolism , Intracellular Signaling Peptides and Proteins/genetics , Intracellular Signaling Peptides and Proteins/metabolism , Long-Term Potentiation , Niemann-Pick Disease, Type C/genetics , Niemann-Pick Disease, Type C/metabolism , Animals , Disease Models, Animal , Humans , Immunohistochemistry , Mice , Mice, Knockout , Models, Biological , Niemann-Pick C1 Protein , Protein Biosynthesis , Receptors, AMPA/metabolism , Synapses/metabolism
3.
Sci Transl Med ; 11(506)2019 08 21.
Article En | MEDLINE | ID: mdl-31434754

Niemann-Pick disease type A (NPD-A) is a lysosomal storage disorder characterized by neurodegeneration and early death. It is caused by loss-of-function mutations in the gene encoding for acid sphingomyelinase (ASM), which hydrolyzes sphingomyelin into ceramide. Here, we evaluated the safety of cerebellomedullary (CM) cistern injection of adeno-associated viral vector serotype 9 encoding human ASM (AAV9-hASM) in nonhuman primates (NHP). We also evaluated its therapeutic benefit in a mouse model of the disease (ASM-KO mice). We found that CM injection in NHP resulted in widespread transgene expression within brain and spinal cord cells without signs of toxicity. CM injection in the ASM-KO mouse model resulted in hASM expression in cerebrospinal fluid and in different brain areas without triggering an inflammatory response. In contrast, direct cerebellar injection of AAV9-hASM triggered immune response. We also identified a minimally effective therapeutic dose for CM injection of AAV9-hASM in mice. Two months after administration, the treatment prevented motor and memory impairment, sphingomyelin (SM) accumulation, lysosomal enlargement, and neuronal death in ASM-KO mice. ASM activity was also detected in plasma from AAV9-hASM CM-injected ASM-KO mice, along with reduced SM amount and decreased inflammation in the liver. Our results support CM injection for future AAV9-based clinical trials in NPD-A as well as other lysosomal storage brain disorders.


Dependovirus/metabolism , Genetic Therapy , Niemann-Pick Disease, Type A/genetics , Niemann-Pick Disease, Type A/therapy , Serogroup , Animals , Brain/metabolism , Brain/pathology , Humans , Inflammation/pathology , Injections , Liver/pathology , Mice, Knockout , Motor Activity , Primates , Sphingomyelin Phosphodiesterase/administration & dosage , Sphingomyelin Phosphodiesterase/blood , Sphingomyelin Phosphodiesterase/genetics , Transgenes
4.
EMBO J ; 38(2)2019 01 15.
Article En | MEDLINE | ID: mdl-30530526

Neuropathic lysosomal storage disorders (LSDs) present with activated pro-inflammatory microglia. However, anti-inflammatory treatment failed to improve disease pathology. We characterise the mechanisms underlying microglia activation in Niemann-Pick disease type A (NPA). We establish that an NPA patient and the acid sphingomyelinase knockout (ASMko) mouse model show amoeboid microglia in neurodegeneration-prone areas. In vivo microglia ablation worsens disease progression in ASMko mice. We demonstrate the coexistence of different microglia phenotypes in ASMko brains that produce cytokines or counteract neuronal death by clearing myelin debris. Overloading microglial lysosomes through myelin debris accumulation and sphingomyelin build-up induces lysosomal damage and cathepsin B extracellular release by lysosomal exocytosis. Inhibition of cathepsin B prevents neuronal death and behavioural anomalies in ASMko mice. Similar microglia phenotypes occur in a Niemann-Pick disease type C mouse model and patient. Our results show a protective function for microglia in LSDs and how this is corrupted by lipid lysosomal overload. Data indicate cathepsin B as a key molecule mediating neurodegeneration, opening research pathways for therapeutic targeting of LSDs and other demyelinating diseases.


Cathepsin B/metabolism , Microglia/pathology , Niemann-Pick Disease, Type A/pathology , Sphingomyelin Phosphodiesterase/genetics , Animals , Cell Line , Child, Preschool , Disease Models, Animal , Disease Progression , Humans , Infant, Newborn , Lysosomes/metabolism , Lysosomes/pathology , Mice , Mice, Knockout , Microglia/metabolism , Niemann-Pick Disease, Type A/genetics , Phenotype , Sphingomyelins/metabolism
...